Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Medical sciences ; (6): 575-581, 2021.
Article in English | WPRIM | ID: wpr-922253

ABSTRACT

: To investigate the protective effect of 7-hydroxyethyl chrysin (7-HEC) on rats with exercise-induced fatigue in hypobaric hypoxic condition.Forty healthy male Wistar rats were randomly divided into four groups with 10 rats in each group: control group, model group, chrysin group and 7-HEC group. The rats in control group were raised at local altitude but other three groups were raised in a simulating altitude of for hypobaric hypoxia treatment. The chrysin group and 7-HEC group were given chrysin or 7-HEC by gavage for respectively; while the control group and model group were given the same amount of sterilized water. The weight-bearing swimming tests were performed 3 d later, and the weight-bearing swimming time was documented. After rats were sacrificed, the liver and skeletal muscle tissue samples were taken for pathological examination and determination of lactate, malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glycogen levels. Blood urea nitrogen was also determined. Compared with the model group, weight-bearing swimming times were significantly prolonged in 7-HEC group [ vs. (4.04±1.30) min, <0.01]; pathological changes in liver and skeletal muscle tissue were attenuated; generation rate of blood urea nitrogen vs. 0.60) mmol·L·min, <0.05], lactate [liver: (0.14±0.05) vs. (0.10±0.03) mg·g·min, skeletal muscle: vs. (0.18±] and MDA [liver: (0.48) vs. (0.78±0.28) nmol·mg·min, skeletal muscle: (0.87±0.19) vs. (0.63±0.11) nmol·mg·min] were significantly reduced (all < 0.05); glycogen content [liver: (15.16±2.69) vs. skeletal muscle: (1.46±0.49) vs.0.48) mg/g] and T-SOD [liver: (1.87±0.01) vs. (2.68±0.12) U/mL, skeletal muscle: 0.42) vs. 0.96) U/mL] were significantly improved (all <0.05). 7-HEC has significant protective effect on the rats with exercise-induced fatigue in hypobaric hypoxia condition.


Subject(s)
Animals , Male , Rats , Altitude , Fatigue/prevention & control , Flavonoids , Hypoxia , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL